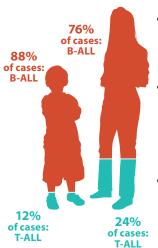
MEASURABLE RESIDUAL DISEASE AND ACUTE LYMPHOBLASTIC LEUKEMIA

ALL Pathophysiology

- Acute lymphoblastic leukemia (ALL) is a malignant disease that is characterized by abnormal proliferation and differentiation of a clonal population of lymphoid cells.
- ALL is a heterogenous disease in terms of its pathology and the population it affects.² It is characterized by a nonspecific presentation consisting of a combination of constitutional symptoms and signs of bone marrow failure.¹


ALL Epidemiology and Prognosis

- ALL is the most common form of leukemia in children and adolescents, accounting for up to 80% of cases.³
- ALL constituted 12.4% of all leukemia cases in 2017, with 64,200 cases recorded.⁴
- The current 5-year survival rate is approximately 90% in high-income countries, and children who are more than 1 year old at diagnosis tend to have the best outcomes.³
- Although most cases of ALL occur in children, most deaths from ALL (about 4 out of 5) occur in adults.⁵ Adults have higher relapse rates and
 poorer outcomes compared with children, with overall survival rates of approximately 20–40%.⁶

Global Number of ALL Cases Has Increased⁴

Immunophenotypes

- ALL is classified as B-cell or T-cell lineage, depending on the expression of lineage markers.⁷
- B-ALL is the most common type of ALL in children and adults, representing approximately 88% and 76% of cases, respectively.8
- T-ALL represents 12% of pediatric and 24% of adult cases of ALL.8

High-Risk Factors for Adult ALL9

Patient-related:

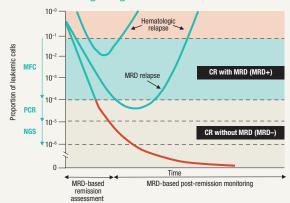
- Age: > 40/55/65 years
- ECOG score: > 1

Disease-related:

- WBC (×109/l): > 30 (B-ALL) / > 100 (T-ALL)
- Immunophenotype: pro-B/early or mature-T
- · Extramedullary disease: central nervous system involvement

Cytogenetics and genetics:

- Ph+/t(4;11)+/other adverse
- BCR-ABL1+
- MLL+
- PBX-E2A+Ph-like
- Ph-like
 IKZF1 del
- FTP
- unmutated NOTCH1

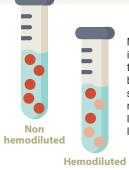

Response dynamics:

- Corticosteroid sensitivity (blast count after pre-phase)
- · Early blast cell response (bone marrow morphology)
- Time to CR (number of courses)
- MRD+ post-induction

Estimated Frequency of Specific Genotypes of B-ALL in Children and Adults⁸

Genotype	Children	Adults
BCR-ABL t(9;22)	3%	25%
E2A-PBX1 t(1;19)	5%	3%
Hypodiploidy < 45 chromosomes	1%	2%
Hyperdiploidy > 50 chromosomes	25%	7%
MLL rearrangements (eg, t[4;11], t[11;19], t[9;11])	8%	10%
MYC t(8;14), t(2;8), t(8;22)	2%	4%
TEL-AML1 t(12;21)	22%	2%
Others	22%	23%

MRD is a Strong Prognostic Indicator in ALL¹⁰



Measurable/Minimal Residual Disease (MRD)

- MRD is defined as the presence of detectable leukemic cells (generally > 10⁻⁴ or 0.01% [meaning 1 leukemic cell in 10,000 normal cells]) within the bone marrow during remission.^{11,12}
- Studies collectively show the high prognostic value of MRD (both during and after initial induction therapy) in assessing relapse risk for patients with ALL.¹³
- Approximately 30–40% of patients with ALL may still harbor MRD, despite achieving CR (< 5% blasts in the bone marrow) with induction and consolidation chemotherapy.^{12,14}
- ESMO Guidelines state the MRD is the most important prognostic factor in ALL and mandate MRD
 assessment by immunophenotype or molecular probe at diagnosis.⁹ Following the diagnosis and
 induction, MRD should be monitored every 3 months using bone marrow aspiration.⁹ MRD-positivity
 post-induction is considered to be a high-risk factor in adult ALL.⁹
- MRD assessment helps guide risk stratification and treatment planning in B-ALL.^{11,13}

Importance of the "First Pull" of Bone Marrow Aspirate for MRD Assessment

- The level of MRD found in the aspirate is dependent on which sample is used.¹⁵ Even a second small-volume pull from the same aspiration site reduces the number of leukemic cells by up to 50% due to hemodilution.¹⁵
- An initial pull of ≤ 3 mL of bone marrow aspirate is recommended as optimal for MRD quantification to avoid hemodilution of the specimen.¹⁶

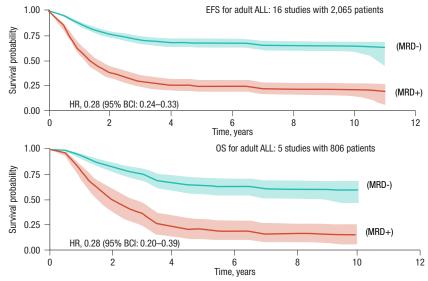
MRD quantification is highly sensitive to hemodilution because hemodiluted samples may report an artificially low proportion of leukemic cells.¹⁵

Peripheral blood for MRD assessment is being investigated as a viable option in ALL, but additional studies are necessary to evaluate the utility of peripheral blood MRD monitoring. 10,17

Methods for MRD Detection in ALL

Flow Cytometry

- Flow cytometry detects abnormal surface markers on leukemic cells.¹⁸
- While turnaround is rapid, interpretation of flow cytometry is challenging and can be difficult to standardize.
- Immunostaining protocols, antibody panels, and gating strategies differ significantly between centers, leading to variability in results.²⁰


Polymerase Chain Reaction (PCR)

- PCR detects genetic abnormalities, such as fusion transcripts (eg, BCR-ABL), Ig/TCR gene rearrangements, or MLL gene rearrangements, using target sequences.¹⁸
- PCR for Ig/TCR is highly standardized and widely used in clinical trials in Europe.¹⁹
- However, PCR is laborious and expensive, and individual. rearrangements may be unstable over time.²¹

Next-Generation Sequencing (NGS)

- NGS detects leukemia-specific IG/TCR sequences.¹⁹
- NGS uses the same principle as PCR for Ig/TCR; however because of its high multiplexing capability, it does not require consensus PCR primers and can directly read the clonal sequence for detection.¹⁹
- NGS techniques may have sensitivity to below 10⁻⁶ to quantify ALL MRD in bone marrow or peripheral blood samples.²²

In a Meta-analysis, Presence of MRD Tripled the Risk of Hematological Relapse or Death Over 10 Years¹³

This information is presented for the purpose of demonstrating the utility of MRD testing as a prognostic indicator in ALL. This analysis is treatment agnostic.

Molecular Assessment in ALL

Assessment of the molecular response is conducted only after patients attain complete cytologic remission with ≥ 1 marker for MRD, and requires the availability of samples at various time points. Responses are categorized as follows:¹²

Molecular CR/complete MRD response/MRD negativity:

Defined as the absence of MRD at a specific time point with an assay sensitivity of ≥ 10⁻⁴

Molecular failure/MRD persistence:

Defined as the persistent quantifiable presence of MRD with an assay sensitivity of ≥ 10⁻⁴

Molecular relapse/MRD reappearance:

 Defined as reappearance of MRD within the quantitative range (> 10⁻⁴) after prior achievement of molecular CR

Method	Target	Sensitivity	Some potential benefits	Some potential limitations
Flow cytometry ^{19,20,23}	Leukemia-associated immunophenotypes	3–4 color: 10 ⁻³ to 10 ⁻⁴ (<i>0.1–0.01%</i>) 6–9 color: 10 ⁻⁴ to 10 ⁻⁵ (<i>0.01–0.001%</i>)	• Rapid	Limited sensitivity/standardization Difficult to interpret
PCR ^{19,20,23}	RT-qPCR: Abnormal gene fusions (eg, <i>BCR-ABL</i>)	10 ⁻⁴ to 10 ⁻⁵ (<i>0.01–0.001%</i>)	High sensitivity Specific	Only possible in leukemias that harbor fusion transcripts Risk of cross contamination
	ASO-PCR: Ig and TCR gene rearrangements		High sensitivity Standardized	Time consuming Patient-specific primers needed
NGS ^{19,24}	lg and TCR gene rearrangements	10 ⁻⁶ (<i>0.0001%</i>)	High sensitivity No patient-specific primers required Available via reference lab Some are FDA-cleared ²⁵	• Turnaround time (~ 7 days)

MRD Summary and Clinical Implications

- MRD is a strong prognostic indicator in B-ALL and may help guide risk stratification and treatment planning. 11,13
- MRD is the most important prognostic factor in ALL.⁹ MRD-positivity post-induction is considered to be a high-risk factor in adult ALL.⁹ An initial pull of ≤ 3 mL of bone marrow aspirate is recommended as optimal for MRD quantification to avoid hemodilution of the specimen.¹⁶
- Flow-based and NGS-based MRD detection methods have high correlation for ≥ 10⁻⁴ leukemia burden, and providers may choose which works best in their practice.²³
- The widespread adoption of MRD as a meaningful endpoint may be improved with further understanding of outcomes data across heterogenous studies, treatments, and patients.¹³
 Improved understanding of the context-dependent prognostic power of MRD, with different implications for time point, prior therapy, and biologic risk group, may aid more universal incorporation of MRD into clinical practice.²⁶

ALL, acute lymphoblastic leukemia; ASO-PCR, allele specific oligonucleotide PCR; B-ALL, B-cell acute lymphoblastic leukemia; BCI, Bayesian Credible Interval; BCR-ABL, breakpoint cluster region-Abelson gene fusion; CI, confidence interval; CR, complete remission; ECOG, Eastern Cooperative Oncology Group; EFS, event-free survival; FDA, Food and Drug Administration; HR, hazard ratio, IAMP21, intrachromosomal amplification of chromosomal amplification of chromosomal amplification of chromosomal presentations expensed in the complex of the compl